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Mission Overview

Atlas V 401

InSight 
Stowed in 

4-m Payload 
Fairing

Vandenberg Air Force Base
(Western Test Range)

Type 1 Trajectory
Max C3 = 14.3 km2/s2, max DLA = -40.8 deg 

LAUNCH
May 5, 2018

(first opportunity)

INTERPLANETARY CRUISE
205 days

APPROACH & EDL
Ballistic Entry

EDL COMMUNICATIONS
Ultra-High Frequency Link 

DEPLOYMENT
54 Sols

SCIENCE MONITORING
One Martian Year (sol 99 – sol 709)

Max. Entry Speed = 5.63 km/s (relative)
Ls = 296 deg (dust storm season)
Landing elevation ~ -2.7 km
Landing LMST ~2:52 PM

MRO
(Telemetry – Open 
Loop Record)

DTE
(Carrier)

SEIS Continuous Data Collection

HP3 data collection (5 min/hour)

Data to relay asset
Twice per sol (55 min)

Diagnostics (25 min)

Sols 16-38: SEIS Deployment
Sols 39-43: WTS Deployment
Sols 44-54: HP3 Deployment
Sols 55-98: HP3 Hammering
Sols 99-709: Science Monitoring

HP3

Nominal Plan:
Sols 0-4: Lander Initialization
Sols 5-15: Instrument Placement 

Site Confirmation

SEIS
(with WTS) 

Elysium Planitia
4.46°N, 135.97°E

InSight

Incoming 

Trajectory

Launch
May 5, 2018

Arrival
Nov 26, 2018

2x Mars  Cubesat
One (MarCO)
(Telemetry –
Bent-Pipe)

MAVEN

MEX

MRO

ODY

To Earth

To Su
n

Entry
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• Phoenix heritage spacecraft built by Lockheed-Martin

The InSight Spacecraft (Cruise Stage)
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Attitude Control System (ACS)

• Attitude control provided via an unbalanced thruster system 
– 4 Reaction Control System (RCS) thrusters fire in pairs for 3-axis 

stabilization & slew to/from TCM attitudes

• 4 Trajectory Correction Maneuver (TCM) thrusters execute main 
burns

• RCS/TCM thrusters mounted onto lander & extended through 
backshell
– Scarfed to backshell contour
– Each RCS thrust vector had non-zero component in all 3 axes
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Cruise Attitude Profiles

• Two attitude profiles designed to balance power, communications, 
and thermal constraints throughout cruise

• Attitude maintained via deadbanding
– Early cruise: 3-axis RCS ΔV due to off-Sun pointing
– Late cruise: Y and Z nominally balanced, RCS ΔV in X direction
– In reality, thrusters not perfectly balanced, small ΔVs in Y and Z also

Early Cruise: Launch to July 12 Late Cruise: July 12 to Entry
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• Determine the spacecraft state
• Predict the future trajectory
• Quantify the uncertainty associated with those estimates

Navigation Basics

• Design maneuvers to aim for 
the target

• Two driving navigation 
requirements:
– Deliver s/c to atmospheric 

entry at an entry flight path 
angle of -12.0 deg +/- 0.21 
deg (3-!)

– Estimate entry flight path
angle to within 0.15 deg for 
final onboard state update

Example B-Plane 6



• 1) Radiometric tracking data (Deep Space Network, DSN)
– Doppler
– Range
– Delta-Differential One-way Range (∆DOR)

• 2) Spacecraft telemetry
– Channelized data

• Routine telemetry available during communication passes
• Attitude, angular rates, temperatures, pressures, etc.

– Non-channelized data
• Small Force Data packets: time of firing, valve on-time, attitude at time 

of firing
• Created every time a thruster fired, stored onboard, downlinked when 

possible
– Interspersed these two data types for attitude modeling
– OD team directly queried telemetry servers

Orbit Determination Data
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• Small forces 

– Time-varying attitude using downlinked telemetry

– Impulsive burn for every RCS thruster pulse

• Antenna motion (part of modeling attitude)

• Solar Radiation Pressure (SRP)

– Spherical harmonics expansion per axis (4 coefficients/axis)

– Can capture very complex SRP forces

– Simpler and more flexible than Phoenix approach of modeling 

spacecraft components

• Spacecraft state, maneuvers, media effects, Earth polar 

motion, UT1 bias, DSN station locations, quasar locations, 

gravitational parameters, Earth/Mars ephemerides…

Spacecraft & Measurement Modeling
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Linear Kalman Filter – Baseline Configuration

(DSN Station Updates
for MER)

(Mars Ephemeris 
Uncertainty for MSL)
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Many, many filter variations to assess sensitivities

Data
variations

Dynamic
variations

Not shown: variations of 
data arc lengths
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• Launch OD is “quick and dirty”
– Simplified models, polynomial accelerations as surrogate for 

discrete small forces
– Limited scope of OD: ensure acquisition at next DSN station
– Short (1.5 hour) Goldstone pass meant no OD update was 

available for Canberra acquisition
• Within several hours of launch, significant non-gravitational 

accelerations were detectable

Launch and Early Cruise

• Switching to modeling discrete 
firings with telemetry helped

• Leading hypothesis: outgassing 
as components were exposed 
to the Sun

• No bakeout performed on the 
ground prior to 2018 launch
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RCS Thruster Flight Performance

~25x expected firing 
rate due to outgassing

TCM-1 
postponed

In-flight 
bakeout
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Attitude Errors During Heavy Outgassing (May 2018)

• Outgassing torque pinned spacecraft against the -Y, -Z deadbands
• Outgassing and solar pressure torques acted in opposite directions

– Solar torque effect not observable until outgassing dissipated

Outgassing torque 
dominant

“Flipping” about Z axis as 
outgassing dissipated

Solar torque 
dominant 
(nominal)
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• TCM-1 delay

– Plan: data cutoff (DCO) at L+5 days, execution at L+10 days

– Flight: DCO at L+10 days, execution at L+17 days

• TCM-1/2 combination

– Plan: Use TCM-1 to target the entry point directly

– Flight: Optimize TCM-1 jointly with TCM-2 to split the ∆V between 
the two maneuvers

– Allowed us to prevent wasting propellant used at TCM-1, knowing 
that outgassing was still happening

• Unplanned in-flight “bakeout” activity

– Put spacecraft in two attitudes used during the RCS thruster 
calibration (TCAL) to ensure outgassing torque wouldn’t interfere 
with the TCAL

Project-Level Outgassing Response
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B-plane: Injection to TCAL
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B-plane: TCAL to TCM-3
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• Outgassing subsided, calm period to fine-tune approach
• TCM-4 was cancelled

– We still needed a maneuver to meet requirements
– At the TCM-4 epoch, the necessary correction was too small to be 

worthwhile
– Fixed errors are

large on this
spacecraft
because of slews

Late Cruise

OD at
TCM-4 DCO

with TCM-4
execution

errors
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• One month before EDL
• Want to put spacecraft in clean, known state
• InSight boots into safe mode à RCS firings guaranteed
• Predicted 10 mm/s to 30 mm/s; got 21 mm/s

Cold Reboot
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B-plane: TCM-3 to Entry
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• OD/navigation goal: deliver InSight accurately to the target
• TCM-6 was not needed for NAV or EDL requirements
• Project chose to implement TCM-6 to avoid potential ground 

hazards

Final Approach
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Landing Accuracy
• On 12/06/18, MRO acquired HiRISE and Context (CTX) images which showed the 

final location of the InSight lander, the backshell/parachute, and the heat shield
• The lander is about 13.8 km away from the target

– The heat shield is located 0.762 km down-track (northeast) from the lander and the 
backshell/parachute is located 0.553 km in the southeast direction

Sol 0 – IDC image with lens cover on
(L + ~4 min)

Sol 0 – IDC image with lens cover off
(L + ~5 hours)

Credit: NASA

Credit: NASA

Credit: NASA

InSight Lander Backshell and ParachuteHeat Shield
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• Data confirming nominal touchdown was received at 11:52:59 AM PST!

InSight Lands on Mars!
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InSight Navigation Team

• InSight Navigation Team: Allen Halsell (NTC), Eric Gustafson, 
Fernando Abilleira, Gene Bonfiglio, Min-Kun Chung, Yungsun
Hahn, Dan Jamerson, David Jefferson, Gerhard Kruizinga, 
Eunice Lau, Jules Lee, Sarah Elizabeth McCandless, Neil 
Mottinger, Evgeniy Sklyanskiy, Mark Wallace
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Want to learn more?

• InSight Special Session at AAS/AIAA Space Flight Mechanics meeting (Jan. 2019):
– 2018 InSight Trajectory Reconstruction and Performance from Launch through 

Landing (Fernando Abilleira)
– Mars Reconnaissance Orbiter Navigation Strategy for Support of InSight 

Lander's Entry, Descent and Landing Sequence (Premkumar Menon)
– InSight Orbit Determination (Eric Gustafson)
– InSight Attitude Control System Thruster Characterization and Calibration for 

Successful Navigation to Mars (Jill Seubert)
– Navigation Performance of the 2018 InSight Mars Lander Mission (Allen Halsell)
– Maneuver Design Overview of the 2018 InSight Mars Lander Mission (Min-Kun

Chung)
– Mars Reconnaissance Orbiter Maneuver Plan for Mars 2020 Entry, Descent, and 

Landing Support and Beyond (Sean Wagner)
– Atmospheric Impacts on EDL Maneuver Targeting for the Insight Mission and 

Unguided Mars Landers (Eugene Bonfiglio)
– Orbiters, Cubesats, and Radio Telescopes, Oh My; Entry, Descent, and Landing 

Communications for the 2018 InSight Mars Lander Mission (Mark Wallace)
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Credit: NASA

Sol 20: Instrument Deployment Arm ready to Deploy SEIS Instrument

Sol 18: Landing Leg

Credit: NASACredit: NASA

Sol 10: Solar Array

Credit: NASA

Sol 18: Retrorockets

Questions?

Sol 78: HP3 attached to grapple

Credit: NASA
Credit: NASA

Sol  70: SEIS deployed on Mars
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Backup Slides
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B-Plane Definition

Moriba Jah, “Derivation of the B-Plane (Body Plane) and its 
Associated Parameters.” 28



Attitude Errors During Nominal Cruise Ops

• Early cruise:
– Solar torque due to off-

Sun pointing pinned 
spacecraft against +Z 
deadband

– Drifts between ±X and 
±Y limits

• Late cruise:
– Solar torque balanced 

as solar arrays ~ Sun-
pointed

– Drifts between ±X, ± Y, 
± Z limits
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Small Force Model Comparisons

• Various predictive models compared throughout cruise to assess 
suitability of baseline approach

• Impact of small force prediction proportional to “time to go”

• Solution uncertainty driven 
by data uncertainties

• Phoenix model > 3! away 
from baseline

TCM-2 DCO
Entry-142 days

TCM-3 DCO
Entry-50 days

TCM-6 DCO
Entry-48 hrs

• Solution uncertainty driven 
by small force model

• ±5% acceleration shifts 
solution by 2!

• Short propagation time 
renders models 
indistinguishable
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Event Location Date
(UTC, 2018)

Magnitude 
(m/s)

Objective

TCM-1 L + 17d May 22 3.78 Remove most of injection errors
TCM-2 E - 121d July 28 1.50 Correct for TCM-1 and orbit determination 

errors

TCM-3 E - 45d Oct. 12 0.167 Correct for TCM-2 and orbit determination 
errors. All subsequent TCMs target to 
desired landing site 

TCM-4 E - 15d Nov. 1 Cancelled Correct for orbit determination and TCM-3 
execution errors

TCM-5 E - 8d Nov. 18 0.057 Correct for orbit determination and TCM-4 
execution errors

TCM-5X E - 5d Nov. 21 N/A Contingency - Same objectives as TCM-5.
TCM-6 E - 22h Nov. 25 21:40 0.085 Final targeting to landing site.

TCM-6X E - 8h Nov. 26 11:40 N/A Contingency – In case TCM-6 cannot be 
executed

TCM-6XM E - 8h Nov. 26 11:40 N/A Contingency – If TCM-6 aborts or safes. 
Selected from pre-determined menu of 
validated maneuvers to maximize the 
probability of successful landing.

Cruise TCM Summary
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• TCM-5 and TCM-6 were only 7 days apart, but it takes time and 
data to reconstruct maneuvers

TCM-6 Design
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